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Semiclassical investigation of a charged relativistic 
membrane model 

M Onderi  and R W Tucker 
Department of Physics, University of Lancaster, Lancaster, LA1 4YB,  UK 

Received 2 November 1987, in final form 13 April 1988 

Abstract. A semiclassical and variational estimate of the energy of a particular type of 
charged membrane is studied and results are found at variance with a previous harmonic 
estimate. We briefly comment on possible alternatives. 

1. Introduction 

In a recent note [ 11 we introduced a relativistic membrane model based on an extremum 
of the action 

d[ c ] = K ' 5,  H 0 1 + f F h * F (1) 

where H is the magnitude of the trace of the shape tensor associated with a three- 
dimensional timelike immersion C into spacetime M. The membrane was electrically 
charged and coupled to the Maxwell field F in a manner first discussed by Dirac [2]. 
The map C is determined from the equation of motion 

(2) 
where Z is the image of C, K = - ~ ' / 3 ,  & is the Gaussian curvature of Z and d * F = 0 on 

= Z. In these formulae * is the Hodge map of the Minkowski spacetime 
metric and 0 refers to the induced metric on Z. We observed in [ l ]  that for certain 
spherically symmetric configurations (where Z has the topology S 2  x R) small radial 
oscillations about equilibrium exist with angular frequency w = m , / e 2  where m ,  is the 
equilibrium rest mass and e is the charge on the membrane in geometrised units. The 
energy of a harmonic quantum associated with these oscillations suggested that an  
attempt be made to find a quantum model for the lepton spectrum based on the action 
in equation (1). In this paper we report on our efforts in this direction. 

K.Gi = $*- I (  F A * F ) I ~  

c M with 

2. Bohr-Sommerfeld estimate 

In standard spherical polar coordinates { t, r, 8, 4 }  about any point in Minkowski 
spacetime we consider the immersion 

(3) C : [ T, a, p ]  H ( r = T, r = R ( 7 ), e = a, 4 = p ) 

t On leave of absence from Hacettepe University, Ankara, Turkey. 
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for some function R. In  this chart the equation of motion ( 2 )  reads 

4R 2 e’ 

This can be derived from the effective Lagrangian 

L = ~ K R R  tanh-’ R - V (  R ) 

with 
, e- 

2R 
V ( R )  = ~ K R  +--. 

Equation ( 5 )  differs from the effective Lagrangian given in [ 11 by a total time derivative. 
The momentum conjugate to R is 

If we introduce a variable r = (1 - R 2 ) - ’  then the canonical Hamiltonian is 

H ( p ,  R )  = p R  - L = 2 ~ R r ( p ,  R )  + e’/2R 

where r is a solution of 

In terms of the energy 

~ K R  er 
E=-  +- 

1 - R 2  2 R  

we have 
112 

p = [ ( E  - $ ) ( E  - ~ K R  + ~ K R  tanh-’( 
2R E - e 2 / 2 R  

( 9 )  

The turning points of the classical motion with fixed energy E > m ,  are the roots R ,  
of the quadratic equation 

e* 

2R+ E = ~ K R ,  +- ( 1 1 )  

and so we may alternatively write 

1 
R 

p =- ( ~ K E ) ” ’ [ ( R  - r ) ( R +  - R ) ( R  - R-)]”2 

where r = R + R - / ( R + +  R - ) .  According to the (modified) semiclassical Bohr- 
Sommerfeld quantisation condition [3]  for periodic systems, 

p d R = r r h ( n + $ )  ( 1 3 )  
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for some integers n = 0 ,1 ,2 ,  . . . . Inserting (12) into (13) and integrating by parts we 
obtain 

dR ( lR:[( R - r)(R, - R)(R  - R _ ) ] ” 2  - 
R p dR = ( ~ K E ) ’ ”  

R ( R - 2 r )  
R -  [ ( R  - r ) (R+  - R ) (  R - R _ ) ] ” 2  

This condition may be expressed in terms of the dimensionless variables 

CL = E l m ,  

p * ( p ) = l *  ( 1-- j 2 ) I  * 

2 a = e / h  =& and p = 1 - p - / p +  

and the elliptic integrals [4] 

d x  
F( k )  = [ , , ‘ [ ( 1 - ~ ’ ) ( 1 - k ~ x ~ ) ] ’ ~ ~  

as 

7r 

a 
p ’ ( p + E ( k ) + p % ( P ,  k)-2p-F(k))=-  ( n  +$). 

We ..ave computed the left-hand side of (22) numerically as a function o p and 
compared it with the right-hand side for various values of n. For n = 0, p, = 13 and  
one needs n = 190 to get p = 200. (It  is worth noting that the ratio of the ground-state 
energy based on the Bohr-Sommerfeld estimate to the harmonic result is comparable 
in this model to the same ratio of estimates found by Dirac in his model). 

3. Variational estimate 

How reliable is the Bohr-Sommerfeld method for the type of Hamiltonian under 
consideration here? A proper answer must require a comparison with a more exact 
treatment. Clearly the p ,  R canonical variables are not very suitable for our purpose 
in this respect. However, in searching for an  alternative canonical representation of 
our classical Hamiltonian one must be aware that different ordering assignments of 
the canonical variables will in general define different quantum theories. 

Consider the canonical transformation p ,  R H P, Q where 
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We readily find that 

P d R - H ( p ,  R ) d t = P d Q - d Z  ( a+- 2$) c o s h P d r  

(mod d )  so that P and Q are indeed canonical. In terms of the dimensionless variables 
q = Q / h  and X =  H,”, we have the Hamiltonian 

in a product form. The classical equilibrium configuration is given by P = 0 and q = ia ,  
when X =  1 .  Hence we define 

, y = q - f a  

XI= x- 1 

so that 

i[ ( 1  +?) ’’*+ ( 1  +?)-’”] cosh P - 1. 

In this form by expanding cosh P we see that if 2 x / a  << 1 

x = f ( P 2 + , y ‘ / a 2 ) - ( , y / f f ) 3 + h P 4 + .  . . . (30) 
Although we recover the classical harmonic limit from this expansion for suitably small 
,y we see that the higher-order terms are not perturbative in a. At a more fundamental 
level we note that there is no obvious choice of ordering the canonical variables to 
define any particular operator Hamiltonian for a quantum description. 

To gain some further insight into the quantum theory we have examined (7) in the 
limit of small radial velocities. In this situation we have defined the theory by adopting 
for a quantum Hamiltonian 

in a Hilbert space equipped with the inner product 

( h 4 )  = 4.rr loE 4 * ( R ) 4 ( R ) R 2  dR. 

Representing p*’ in this space by the Hermitian operator 

h2  a* -- - 
R dR’(R 

we have performed a variational estimate of the ground-state energy based on a 
one-parameter trial function 

4, ( P I  = P exp( -h2) (33)  
where R = Rop in terms of the classical equilibrium radius Ro = e’/ m, . In terms of A 
we find 
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which is minimised when 

A = $[CY( + 24)”’ - a’]. ( 3 5 )  

Thus if the variational theorem is applicable to the Hamiltonian ( 3 1 )  then the associated 
ground-state energy turns out to be less than 13m,. 

4. Generalisations 

Finally we comment on a more general (two-parameter) model in which Dirac’s original 
action is augmented with the action depending on the shape tensor: 

In this situation the effective Lagrangian for spherical configurations ( 3 )  is 

L =  - K , R ’ ( ~ - R ~ ) ’ / ’ + ~ K , R R  tanh-’ d - 2 ~ , R - e = / 2 R .  ( 3 7 )  

The equation of motion for R ( t )  

has the first integral 

The equilibrium configuration R = Ro with energy E = m, relates the constants K , ,  K~ 

to Ro and m, 

As before the canonical Hamiltonian is given implicitly in terms of p and R by 

H ( p ,  R ) =  ~ ~ R ~ r ~ / ~ + 2 ~ ~ R r + e ~ / 2 R  (42) 
where r in this case is a solution of 

The canonical transformation ( p ,  R ) -  ( P ,  Q )  

Q = f ~ , R ~ r “ *  +~K,R‘T 

gives 

H(P,  Q ) = ~ , R ~ c o s h  P + ~ K , R  cosh‘ P+e2 /2R  

(45) 

(46) 
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where R (  P, Q )  is a solution of the cubic equation 

f ( ~ ,  cosh p ) R 3 + ( 2 ~ z C o s h 2  P )R’ -Q=O.  

We d o  not pursue this model further here. 

(47) 

5. Conclusions 

The semiclassical Bohr-Sommerfeld and variational approaches used to estimate the 
energy of radial modes in our model give results that are an  order of magnitude lower 
than the estimate based on the energy of a harmonic quantum. We remarked in [ l ]  
that even at the classical level one could not regard an  oscillation with Elm, = 200 to 
have a period independent of amplitude. Although the above estimates are not 
conducive to the idea that our model describe a spectrum of excited lepton states they 
d o  not in themselves rule out the possibility that such a spectrum may have its origin 
in some extended particle model. The Bohr-Sommerfeld approach by its very nature 
makes no explicit reference to the effects of operator ordering. Ordering ambiguities 
are clearly evident in the canonical representation of our Hamiltonian. In the vari- 
ational approach we have of necessity had  to neglect higher-order operators in the 
expansion of the Hamiltonian and we have given reasons to suggest that such terms 
cannot be ignored. 

There may be other choices of canonical variables that are more appropriate for a 
passage to the quantum theory. In a complete treatment one would expect to represent 
the algebra of the Lorentz group on the space of quantum states for the membrane. 
It is not difficult to find new canonical variables in which the Hamiltonian no longer 
depends on a hyperbolic function. However, the appealing product form of (26) is 
then lost. 

We have discussed in this paper a charged membrane model in terms of certain 
geometrical properties of a three-dimensional timelike immersion into spacetime. The 
actions discussed here are the simplest that give rise to classical differential equations 
of motion no higher than second order. The model based on [ l ]  gives a surprising 
estimate for the rest mass of an  excited state in the quantised harmonic approximation; 
a result that is not consistent with a semiclassical Bohr-Sommerfeld estimate. However, 
it is not immediately clear that such an  estimate is completely reliable for our model 
since we have not found a representation of the Hamiltonian offering a natural ordering 
in which to formulate an  exact quantum theory. Whilst the harmonic estimate must 
remain an  unreliable one the question of a proper quantisation of our model remains 
open. 

We have briefly examined a model in which both intrinsic and  extrinsic curvatures 
play a role in the dynamics to see if any simplifications occur. From our preliminary 
analysis this seems unlikely. It may be that in models of this type the neglect of Casimir 
effects and  fermionic properties is unwarranted. 
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